Engineering microbial phenotypes through rewiring of genetic networks
نویسندگان
چکیده
The ability to program cellular behaviour is a major goal of synthetic biology, with applications in health, agriculture and chemicals production. Despite efforts to build 'orthogonal' systems, interactions between engineered genetic circuits and the endogenous regulatory network of a host cell can have a significant impact on desired functionality. We have developed a strategy to rewire the endogenous cellular regulatory network of yeast to enhance compatibility with synthetic protein and metabolite production. We found that introducing novel connections in the cellular regulatory network enabled us to increase the production of heterologous proteins and metabolites. This strategy is demonstrated in yeast strains that show significantly enhanced heterologous protein expression and higher titers of terpenoid production. Specifically, we found that the addition of transcriptional regulation between free radical induced signalling and nitrogen regulation provided robust improvement of protein production. Assessment of rewired networks revealed the importance of key topological features such as high betweenness centrality. The generation of rewired transcriptional networks, selection for specific phenotypes, and analysis of resulting library members is a powerful tool for engineering cellular behavior and may enable improved integration of heterologous protein and metabolite pathways.
منابع مشابه
Strategies for the multiplex mapping of genes to traits
Rewiring and optimization of metabolic networks to enable the production of commercially valuable chemicals is a central goal of metabolic engineering. This prospect is challenged by the complexity of metabolic networks, lack of complete knowledge of gene function(s), and the vast combinatorial genotype space that is available for exploration and optimization. Various approaches have thus been ...
متن کاملEvolution of Transcription Networks — Lessons from Yeasts
That regulatory evolution is important in generating phenotypic diversity was suggested soon after the discovery of gene regulation. In the past few decades, studies in animals have provided a number of examples in which phenotypic changes can be traced back to specific alterations in transcriptional regulation. Recent advances in DNA sequencing technology and functional genomics have stimulate...
متن کاملDifferential Bees Flux Balance Analysis with OptKnock for In Silico Microbial Strains Optimization
Microbial strains optimization for the overproduction of desired phenotype has been a popular topic in recent years. The strains can be optimized through several techniques in the field of genetic engineering. Gene knockout is a genetic engineering technique that can engineer the metabolism of microbial cells with the objective to obtain desirable phenotypes. However, the complexities of the me...
متن کاملGene Knockout Identification Using an Extension of Bees Hill Flux Balance Analysis
Microbial strain optimisation for the overproduction of a desired phenotype has been a popular topic in recent years. Gene knockout is a genetic engineering technique that can modify the metabolism of microbial cells to obtain desirable phenotypes. Optimisation algorithms have been developed to identify the effects of gene knockout. However, the complexities of metabolic networks have made the ...
متن کاملUsing Neural Networks and Genetic Algorithms for Modelling and Multi-objective Optimal Heat Exchange through a Tube Bank
In this study, by using a multi-objective optimization technique, the optimal design points of forced convective heat transfer in tubular arrangements were predicted upon the size, pitch and geometric configurations of a tube bank. In this way, the main concern of the study is focused on calculating the most favorable geometric characters which may gain to a maximum heat exchange as well as a m...
متن کامل